CDECquery {sharpshootR}R Documentation

Get water-related data (California only) from the CDEC website.

Description

Get water-related data (California only) from the CDEC website.

Usage

CDECquery(id, sensor, interval = "D", start, end)

Arguments

id

station ID (e.g. 'spw'), see details

sensor

the sensor ID (e.g. 45), see details

interval

character, 'D' for daily, 'H' for hourly, 'M' for monthly

start

starting date, in the format 'YYYY-MM-DD'

end

ending date, in the format 'YYYY-MM-DD'

Details

1.

Station IDs can be found here: http://cdec.water.ca.gov/staInfo.html

2.

Sensor IDs can be found using this URL: http://cdec.water.ca.gov/cgi-progs/queryCSV?station_id=, followed by the station ID.

3.

Resevoir capacities can be found here: http://cdec.water.ca.gov/misc/resinfo.html

4.

A new interactive map of CDEC stations can be found here: http://cdec.water.ca.gov/cdecstation/

Value

a data.frame object with the following fields: 'datetime', 'year', 'month', 'value'.

Author(s)

D.E. Beaudette

References

http://cdec.water.ca.gov/queryCSV.html

See Also

CDECsnowQuery

Examples

## Not run: 
##D library(latticeExtra)
##D library(plyr)
##D library(e1071)
##D 
##D # get daily resevoir storage (ac. ft) from Pinecrest, New Melones and Lyons resevoirs
##D pinecrest <- CDECquery(id='swb', sensor=15, interval='D', start='2012-09-01', end='2015-01-01')
##D new.melones <- CDECquery(id='nml', sensor=15, interval='D', start='2012-09-01', end='2015-01-01')
##D lyons <- CDECquery(id='lys', sensor=15, interval='D', start='2012-09-01', end='2015-01-01')
##D 
##D # compute storage capacity
##D pinecrest$capacity <- pinecrest$value / 18312 * 100
##D new.melones$capacity <- new.melones$value / 2400000 * 100
##D lyons$capacity <- lyons$value / 6228 * 100
##D 
##D # combine
##D g <- make.groups(new.melones, lyons, pinecrest)
##D 
##D # resonable date scale
##D r <- range(g$datetime)
##D s.r <- seq(from=r[1], to=r[2], by='1 month')
##D 
##D # better colors
##D tps <- list(superpose.line=list(lwd=2, col=brewer.pal(n=3, name='Set1')))
##D 
##D # plot
##D xyplot(capacity ~ datetime, groups=which, data=g, type='l', 
##D        xlab='', ylab='Capacity (##D 
##D        scales=list(x=list(at=s.r, labels=format(s.r, "##D 
##D        auto.key=list(columns=3, lines=TRUE, points=FALSE),
##D        par.settings=tps,
##D        panel=function(...) {
##D          panel.abline(h=seq(0, 100, by=10), col='grey')
##D          panel.abline(v=s.r, col='grey')
##D          panel.xyplot(...)
##D        })
##D 
##D 
##D ##
##D # New Melones monthly data, retrieve as far back in time as possible 
##D new.melones.monthly <- CDECquery(id='nml', sensor=15, interval='M', 
##D start='1900-01-01', end='2015-01-01')
##D 
##D # convert to pct. capacity
##D new.melones.monthly$capacity <- new.melones.monthly$value / 2400000 * 100
##D 
##D 
##D # make a nice color ramp function
##D cols <- colorRampPalette(brewer.pal(9, 'Spectral'), 
##D space='Lab', interpolate='spline')
##D 
##D # plot, each pixel is colored by the total precip by year/month
##D levelplot(capacity ~ year * month, data=new.melones.monthly, col.regions=cols, xlab='', 
##D ylab='', scales=list(x=list(tick.number=20)), main='New Melones Capacity (##D 
##D 
##D 
##D ##
##D # get daily precip totals from Stan Powerhouse
##D x <- CDECquery(id='spw', sensor=45, interval='D', start='1900-01-01', end='2015-01-01')
##D 
##D # compute total precip by year/month
##D a <- ddply(x, c('year', 'month'), summarize, s=sum(value, na.rm=TRUE))
##D 
##D # convert monthly precipitation values into Z-scores by month
##D a.scaled <- ddply(a, 'month', summarize, year=year, scaled.ppt=scale(s))
##D 
##D # make a nice color ramp function, scaled by the skewness of the underlying distribution
##D cols <- colorRampPalette(brewer.pal(9, 'Spectral'), 
##D space='Lab', interpolate='spline', bias=skewness(a.scaled$scaled.ppt, na.rm=TRUE))
##D 
##D # plot, each pixel is colored by the total precip by year/month
##D levelplot(scaled.ppt ~ year * month, data=a.scaled, col.regions=cols, xlab='', 
##D ylab='', scales=list(x=list(tick.number=10)), 
##D main='Monthly Total Precipitation (as z-score) SPW')
##D 
##D 
##D ##
##D # get pre-aggregated monthly data from Sonora RS
##D x <- CDECquery(id='sor', sensor=2, interval='M', start='1900-01-01', end='2015-01-01')
##D 
##D # make a nice color ramp function, scaled by the skewness of the underlying distribution
##D cols <- colorRampPalette(brewer.pal(9, 'Spectral'), space='Lab', 
##D interpolate='spline', bias=skewness(x$value, na.rm=TRUE))
##D 
##D # plot
##D levelplot(value ~ year * month, data=x, col.regions=cols, xlab='', 
##D ylab='', scales=list(x=list(tick.number=20)), main='Monthly Total Precipitation (inches) SOR')
##D 
##D 
##D 
##D 
##D 
## End(Not run)

[Package sharpshootR version 0.8-4 Index]