ca630 {aqp}R Documentation

Soil Data from the Central Sierra Nevada Region of California

Description

Site and laboratory data from soils sampled in the central Sierra Nevada Region of California.

Usage

data(ca630)

Format

List containing:

$site : A data frame containing site information.

user_site_id

national user site id

mlra

the MLRA

county

the county

ssa

soil survey area

lon

longitude, WGS84

lat

latitude, WGS84

pedon_key

national soil profile id

user_pedon_id

local soil profile id

cntrl_depth_to_top

control section top depth (cm)

cntrl_depth_to_bot

control section bottom depth (cm)

sampled_taxon_name

soil series name

$lab : A data frame containing horizon information.

pedon_key

national soil profile id

layer_key

national horizon id

layer_sequence

horizon sequence number

hzn_top

horizon top (cm)

hzn_bot

horizon bottom (cm)

hzn_desgn

horizon name

texture_description

USDA soil texture

nh4_sum_bases

sum of bases extracted by ammonium acetate (pH 7)

ex_acid

exchangeable acidity [method ?]

CEC8.2

cation exchange capacity by sum of cations method (pH 8.2)

CEC7

cation exchange capacity by ammonium acetate (pH 7)

bs_8.2

base saturation by sum of cations method (pH 8.2)

bs_7

base saturation by ammonium acetate (pH 7)

Details

These data were extracted from the NSSL database. 'ca630' is a list composed of site and lab data, each stored as dataframes. These data are modeled by a 1:many (site:lab) relation, with the 'pedon_id' acting as the primary key in the 'site' table and as the foreign key in the 'lab' table.

Source

http://ssldata.nrcs.usda.gov/

Examples

library(plyr)
library(lattice)
library(Hmisc)
library(maps)
library(sp)

# check the data out:
data(ca630)
str(ca630)
## List of 2
##  $ site:'data.frame':    137 obs. of  11 variables:
##   ..$ user_site_id      : chr [1:137] "90CA009101" "90CA009102" "90CA009103" "90CA009104" ...
##   ..$ mlra              : chr [1:137] "22" "22" "22" "22" ...
##   ..$ county            : chr [1:137] "CA009" "CA009" "CA009" "CA009" ...
##   ..$ ssa               : chr [1:137] "CA731" "CA731" "CA731" "CA731" ...
##   ..$ lon               : num [1:137] -120 -120 -120 -120 -120 ...
##   ..$ lat               : num [1:137] 38.4 38.4 38.4 38.4 38.3 ...
##   ..$ pedon_key         : chr [1:137] "91P0709" "91P0710" "91P0711" "91P0712" ...
##   ..$ user_pedon_id     : chr [1:137] "90CA009101" "90CA009102" "90CA009103" "90CA009104" ...
##   ..$ cntrl_depth_to_top: int [1:137] NA 25 NA 0 25 NA 25 25 0 28 ...
##   ..$ cntrl_depth_to_bot: int [1:137] NA 100 NA 30 100 NA 97 100 30 78 ...
##   ..$ sampled_taxon_name: chr [1:137] "Windy" "Tallac" "Gerle" "Nd" ...
##  $ lab :'data.frame':    571 obs. of  13 variables:
##   ..$ pedon_key          : chr [1:571] "91P0709" "91P0709" "91P0709" "91P0709" ...
##   ..$ layer_key          : chr [1:571] "91P04048" "91P04049" "91P04050" "91P04051" ...
##   ..$ layer_sequence     : int [1:571] 1 2 3 4 1 2 3 4 1 2 ...
##   ..$ hzn_top            : int [1:571] 0 30 79 119 0 25 46 71 0 25 ...
##   ..$ hzn_bot            : int [1:571] 30 79 119 218 25 46 71 107 25 58 ...
##   ..$ hzn_desgn          : chr [1:571] "A" "Bw1" "Bw2" "C" ...
##   ..$ texture_description: chr [1:571] "Sandy loam" "Sandy loam" "Fine sandy loam" "Fine sandy loam" ...
##   ..$ nh4_sum_bases      : num [1:571] 9.9 1.3 0.9 0.8 10.1 1.4 0.8 0.2 1.7 0.5 ...
##   ..$ ex_acid            : num [1:571] 21.9 18.8 13.7 12.2 11.3 18.6 18.6 12 11.6 9.3 ...
##   ..$ CEC8.2             : num [1:571] 31.8 20.1 14.6 13 21.4 20 19.4 12.2 13.3 9.8 ...
##   ..$ CEC7               : num [1:571] 25.3 13.2 10.8 9 16.7 14.1 11.6 6.5 14.9 9.7 ...
##   ..$ bs_8.2             : int [1:571] 31 6 6 6 47 7 4 2 13 5 ...
##   ..$ bs_7               : int [1:571] 39 10 8 9 60 10 7 3 11 5 ...
# note that pedon_key is the link between the two tables

# make a copy of the horizon data
ca <- ca630$lab

# promote to a SoilProfileCollection class object
depths(ca) <- pedon_key ~ hzn_top + hzn_bot

# add site data, based on pedon_key
site(ca) <- ca630$site

# ID data missing coordinates: '|' is a logical OR
(missing.coords.idx <- which(is.na(ca$lat) | is.na(ca$lon)))
## [1] 48 56
# remove missing coordinates by safely subsetting
if(length(missing.coords.idx) > 0)
    ca <- ca[-missing.coords.idx, ]

# register spatial data
coordinates(ca) <- ~ lon + lat

# assign a coordinate reference system
proj4string(ca) <- '+proj=longlat +datum=NAD83'

# check the result
print(ca)
## Object of class SoilProfileCollection
## Number of profiles: 113
## Depth range: 29-260 cm
## 
## Horizon attributes:
##     pedon_key layer_key layer_sequence hzn_top hzn_bot hzn_desgn
## 451   00P0780  00P04900              1       0       2         A
## 452   00P0780  00P04901              2       2      15       Bw1
## 453   00P0780  00P04902              3      15      30       Bw2
## 454   00P0780  00P04903              4      30      45        Cd
## 455   00P0781  00P04904              1       0      14         A
## 456   00P0781  00P04905              2      14      38       Bt1
##      texture_description nh4_sum_bases ex_acid CEC8.2 CEC7 bs_8.2 bs_7
## 451 Loamy very fine sand           1.2     8.7    9.9  9.8     12   12
## 452      Fine sandy loam           0.4    11.2   11.6  5.7      3    7
## 453      Fine sandy loam           0.4     9.2    9.6  4.0      4   10
## 454      Fine sandy loam           0.4     3.9    4.3  1.7      9   24
## 455      Fine sandy loam           2.0    12.0   14.0  8.2     14   24
## 456      Fine sandy loam           1.1    20.8   21.9 11.7      5    9
## 
## Sampling site attributes:
##   pedon_key user_site_id mlra county   ssa user_pedon_id
## 1   00P0780   00CA109001   22  CA109 CA790    00CA109001
## 2   00P0781   00CA109002   22  CA109 CA790    00CA109002
## 3   00P0783   00CA109004   22  CA109 CA790    00CA109004
## 4   00P0784   00CA109005   22  CA109 CA790    00CA109005
## 5   00P0785   00CA109006   22  CA109 CA790    00CA109006
## 6   00P0786   00CA109007   22  CA109 CA790    00CA109007
##   cntrl_depth_to_top cntrl_depth_to_bot sampled_taxon_name
## 1                 25                100          (unnamed)
## 2                 14                 64          (unnamed)
## 3                 25                100          (unnamed)
## 4                 25                100          (unnamed)
## 5                 25                100          (unnamed)
## 6                 25                100          (unnamed)
## 
## Spatial Data:
##            min        max
## lon -120.71503 -119.15709
## lat   37.75437   38.45706
## [1] "+proj=longlat +datum=NAD83 +ellps=GRS80 +towgs84=0,0,0"
# map the data (several ways to do this, here is a simple way)
map(database='county', region='california')
points(coordinates(ca), col='red', cex=0.5)

plot of chunk unnamed-chunk-1

# aggregate %BS 7 for all profiles into 1 cm slices
a <- slab(ca, fm= ~ bs_7)

# plot median & IQR by 1 cm slice
xyplot(
top ~ p.q50, data=a, lower=a$p.q25, upper=a$p.q75, 
ylim=c(160,-5), alpha=0.5, scales=list(alternating=1, y=list(tick.num=7)),
panel=panel.depth_function, prepanel=prepanel.depth_function,
ylab='Depth (cm)', xlab='Base Saturation at pH 7', 
par.settings=list(superpose.line=list(col='black', lwd=2))
)

plot of chunk unnamed-chunk-1

# aggregate %BS at pH 8.2 for all profiles by MLRA, along 1 cm slices
# note that mlra is stored in @site
a <- slab(ca, mlra ~ bs_8.2)

# keep only MLRA 18 and 22
a <- subset(a, subset=mlra %in% c('18', '22'))

# plot median & IQR by 1 cm slice, using different colors for each MLRA
xyplot(
top ~ p.q50, groups=mlra , data=a, lower=a$p.q25, upper=a$p.q75, 
ylim=c(160,-5), alpha=0.5, scales=list(y=list(tick.num=7, alternating=3), x=list(alternating=1)),
panel=panel.depth_function, prepanel=prepanel.depth_function,
ylab='Depth (cm)', xlab='Base Saturation at pH 8.2', 
par.settings=list(superpose.line=list(col=c('black','blue'), lty=c(1,2), lwd=2)),
auto.key=list(columns=2, title='MLRA', points=FALSE, lines=TRUE)
)

plot of chunk unnamed-chunk-1

# safely compute hz-thickness weighted mean CEC (pH 7)
# using data.frame objects
head(lab.agg.cec_7 <- ddply(ca630$lab, .(pedon_key), 
.fun=summarise, CEC_7=wtd.mean(bs_7, weights=hzn_bot-hzn_top)))
##   pedon_key     CEC_7
## 1   00P0780 13.888889
## 2   00P0781 11.191489
## 3   00P0783 19.254545
## 4   00P0784 29.825000
## 5   00P0785  9.917722
## 6   00P0786 11.514286
# extract a SPDF with horizon data along a slice at 25 cm
s.25 <- slice(ca, fm=25 ~ bs_7 + CEC7 + ex_acid)
## result is a SpatialPointsDataFrame object
spplot(s.25, zcol=c('bs_7','CEC7','ex_acid'))

# note that the ordering is preserved:
all.equal(s.25$pedon_key, profile_id(ca))
## [1] TRUE
# extract a data.frame with horizon data at 10, 20, and 50 cm
s.multiple <- slice(ca, fm=c(10,20,50) ~ bs_7 + CEC7 + ex_acid)

# Extract the 2nd horizon from all profiles as SPDF
ca.2 <- ca[, 2]
## result is a SpatialPointsDataFrame object
# subset profiles 1 through 10
ca.1.to.10 <- ca[1:10, ]

# basic plot method: profile plot
plot(ca.1.to.10, name='hzn_desgn')

[Package aqp version 1.9.1 Index]