profileApply-methods {aqp} | R Documentation |
Apply a function to soil profiles within a SoilProfileCollection object, each iteration has access to a SoilProfileCollection object.
# method for SoilProfileCollection objects profileApply(object, FUN, simplify=TRUE, ...)
object |
a SoilProfileCollection |
FUN |
a function to be applied to each profile within the collection |
simplify |
logical, should the result be simplified to a vector? see examples |
... |
further arguments passsed to FUN |
When simplify is TRUE, a vector of length nrow(object)
(horizon data) or of length length(object)
(site data). When simplify is FALSE, a list is returned.
signature(object = "SoilProfileCollection")
data(sp1)
depths(sp1) <- id ~ top + bottom
# estimate soil depth using horizon designations
profileApply(sp1, estimateSoilDepth, name='name', top='top', bottom='bottom')
## P001 P002 P003 P004 P005 P006 P007 P008 P009
## 89 59 67 62 68 200 233 200 240
# scale properties within each profile
# scaled = (x - mean(x)) / sd(x)
sp1$d <- profileApply(sp1, FUN=function(x) round(scale(x$prop), 2))
plot(sp1, name='d')
# compute depth-wise differencing by profile
# note that our function expects that the column 'prop' exists
f <- function(x) { c(x$prop[1], diff(x$prop)) }
sp1$d <- profileApply(sp1, FUN=f)
plot(sp1, name='d')
# compute depth-wise cumulative sum by profile
# note the use of an anonymous function
sp1$d <- profileApply(sp1, FUN=function(x) cumsum(x$prop))
plot(sp1, name='d')
# compute profile-means, and save to @site
# there must be some data in @site for this to work
site(sp1) <- ~ group
sp1$mean_prop <- profileApply(sp1, FUN=function(x) mean(x$prop, na.rm=TRUE))
# re-plot using ranks defined by computed summaries (in @site)
plot(sp1, plot.order=rank(sp1$mean_prop))
## iterate over profiles, subsetting horizon data
# example data
data(sp1)
# promote to SoilProfileCollection
depths(sp1) <- id ~ top + bottom
site(sp1) <- ~ group
# make some fake site data related to a depth of some importance
sp1$dep <- profileApply(sp1, function(i) {round(rnorm(n=1, mean=mean(i$top)))})
# custom function for subsetting horizon data, by profile
# keep horizons with lower boundary < site-level attribute 'dep'
fun <- function(i) {
# extract horizons
h <- horizons(i)
# make an expression to subset horizons
exp <- paste('bottom < ', i$dep, sep='')
# subset horizons, and write-back into current SPC
horizons(i) <- subset(h, subset=eval(parse(text=exp)))
# return modified SPC
return(i)
}
# list of modified SoilProfileCollection objects
l <- profileApply(sp1, fun, simplify=FALSE)
# re-combine list of SoilProfileCollection objects into a single SoilProfileCollection
sp1.sub <- do.call(rbind, l)
# graphically check
par(mfrow=c(2,1), mar=c(0,0,1,0))
plot(sp1)
points(1:length(sp1), sp1$dep, col='red', pch=7)
plot(sp1.sub)
## Not run:
##D ##
##D ## helper functions: these must be modified to suit your own data
##D ##
##D
##D # compute the weighted-mean of some property within a given diagnostic horizon
##D # note that this requires conditional eval of data that may contain NA
##D # see ?slab for details on the syntax
##D # note that function expects certain columns within 'x'
##D f.diag.wt.prop <- function(x, d.hz, prop) {
##D # extract diagnostic horizon data
##D d <- diagnostic_hz(x)
##D # subset to the requested diagnostic hz
##D d <- d[d$diag_kind == d.hz, ]
##D # if missing return NA
##D if(nrow(d) == 0)
##D return(NA)
##D
##D # extract depths and check for missing
##D sv <- c(d$featdept, d$featdepb)
##D if(any(is.na(sv)))
##D return(NA)
##D
##D # create formula from named property
##D fm <- as.formula(paste('~', prop))
##D # return just the (weighted) mean, accessed from @horizons
##D s <- slab(x, fm, slab.structure=sv, slab.fun=mean)$value
##D return(s)
##D }
##D
##D
##D # conditional eval of thickness of some diagnostic feature or horizon
##D # will return a vector of length(x), you can save to @site
##D f.diag.thickness <- function(x, d.hz) {
##D # extract diagnostic horizon data
##D d <- diagnostic_hz(x)
##D # subset to the requested diagnostic hz
##D d <- d[d$diag_kind == d.hz, ]
##D # if missing return NA
##D if(nrow(d) == 0)
##D return(NA)
##D
##D # compute thickness
##D thick <- d$featdepb - d$featdept
##D return(thick)
##D }
##D
##D
##D # conditional eval of property within particle size control section
##D # makes assumptions about the SPC that is passed-in
##D f.psc.prop <- function(x, prop) {
##D # these are accessed from @site
##D sv <- c(x$psctopdepth, x$pscbotdepth)
##D # test for missing PCS data
##D if(any(is.na(sv)))
##D return(NA)
##D
##D # this should never happen... unless someone made a mistake
##D # check to make sure that the lower PSC boundary is shallower than the depth
##D if(sv[2] > max(x))
##D return(NA)
##D
##D # create formula from named property
##D fm <- as.formula(paste('~', prop))
##D # return just the (weighted) mean, accessed from @horizons
##D s <- slab(x, fm, slab.structure=sv, slab.fun=mean)$value
##D return(s)
##D }
##D
##D # try with some sample data
##D data(loafercreek, package='soilDB')
##D
##D profileApply(loafercreek, f.diag.wt.prop, d.hz='argillic horizon', prop='clay')
##D profileApply(loafercreek, f.diag.thickness, d.hz='argillic horizon')
##D profileApply(loafercreek, f.psc.prop, prop='clay')
##D
## End(Not run)